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Abstract - Micro-cantilever beams represent good candidates 
for sensing applications due to their simple structure, 
predictable response and ease to manufacture. The range of 
their applications covers bio-engineering, telecommunications 
and automotive. 
Both static and dynamic responses of micro-cantilever beams 
under various types of loading were extensively studied during 
last several decades. The objective of this work is to find a 
suitable model for the dynamic deflection of single and double 
micro-cantilever beams while subjected to an electrostatic field 
and evaluate the pull-in voltage. The model for this 
phenomenon is described by a nonlinear differential equation 
(NDE). One of the further specific objectives of this 
investigation is to study the critical pull-in voltage, i.e. the 
voltage that is close to the values that set the micro-beam to an 
irreversible instability status. This situation ends up with the 
failure of the beam when it will touch the substrate. The pull-in 
voltage represents a major concern in MEMS capacitive 
measurement based applications and it has been widely 
studied in literature. Theoretical studies on large deflection of 
micro-cantilever beams under the influence of an electric field 
were carried out. The differential equation that models the 
dynamic behaviour of the micro-cantilever beam under 
electrostatic loading is nonlinear and stiff. A simplified model 
for a micro-cantilever beam could be represented as a single 
degree of freedom (SDOF) mass-damper-spring. Maple® 
software includes an algorithm which is called ISODE that can 
satisfactory solve numerically this stiff NDE. This algorithm 
uses adaptive time-step that enables a feasible solution. 
Further, the stiffness model base on the dynamic behaviour of 
twin micro-cantilever beams was derived. The effect of 
application of the pull-in voltage is numerically investigated. A 
close-form time response to step-voltage solution is derived by 
Lie symmetry groups and the pull-in voltage calculated for an 
undamped system. The solution is compared to the results 

numerically determined by solving the ODE of the reduced form 
of the non-linear model. 
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Symmetries. 
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Nomenclature 
Variable symbol 

y(t) deflection 

t time 

ξ damping factor 

ωn natural frequency of beam 

f(t) external force on beam 

m mass of beam 

ε0 absolute permittivity 

A area of the beam 

V applied voltage 

g original gap 

v0 initial velocity of beam 

ϕ, ψ diffeomorphism functions 

α parameter of the group 

U transformation operator 

ξ(x, y), η(x, y) infinitesimal transformation 

C1, C2, C3,
C4, C5, C6

Constant numbers 

r(x, y), s(x, y) canonical coordinates 
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1. Introduction 
Pull-in voltage represents an important 

parameter for micro-cantilever beams when subjected 
to local electric fields. The pull-in voltage dictates the 
limited performance of the investigated device that is 
the voltage at which the system becomes irreversible 
unstable. Following the equilibrium of forces of a lump 
mass model it has been found that [1] the micro-
cantilever beam subjected to the pull-in voltage will be 
attracted by the substrate and will reach a distance the 
corresponds to 2/3 of the initial gap, moment at which 
the structure will become irreversible unstable. The 
open literature includes many contributions that report 
the results of the theoretical and experimental findings 
in conjunction with the operation of micro-fabricated 
cantilever structures interacting with different types of 
electric fields.  

The pull-in voltage can be also calculated from the 
differential equation that describes the model of the 
dynamic behaviour of the micro-cantilever beam 
subjected to an electrostatic field. There are several 
methods to obtain the governing differential equation. 
The common methods are using either Hamiltonian [2] 
or energy [3] methods. Many researchers used several 
different approaches to linearize and simplify the 
governing equations given their high non-linearity. The 
Finite Element Method (FEM) was extensively used to 
numerically find the pull-in voltage [4]. Taylor series 
are used to linearize the governing differential equation 
in [5]. Perturbation method [6] and Runge-Kutta 
algorithms represent other approaches of solving the 
derived Duffing equations that are used to model the 
dynamic behaviour of the micro-cantilever beam 
subjected to both electric field and harmonic 
excitations. These methods are applicable to a Duffing 
equation as it is not a stiff equation.  Another approach 
assumes small deflections of the structures involved 
and the results are compared with the experimental 
data [1]. This method is not very suitable due to the 
nature of the large deflection of micro-cantilever beams 
in electric field [7].  Continuum theory while using 
dimensionless parameters and orthogonal functions 
type Taylor series [8] were employed in the derivation 
of the governing equations of the dynamic behaviour of 
the micro-cantilever beam. In the small deflection 
approach, the error is found to be directly proportional 
with the length of the beam and decreases when the 
structure is excited at a difference of potential 
significantly below the pull-in voltage value [9]. The 
effects of variation of the width and thickness of the 

micro-cantilever beam on the resonant frequency were 
the subject of several theoretical and experimental 
studies [10]. 

It is to be mentioned here that the pull-in 
between two flexible surfaces was not reported as 
studied so far in the open literature. 

 
2. Driving Governing Equations 

The dynamic behaviour of micro-cantilever-type 
actuators under electrostatic filed by assuming that 
continues media is a simplified system the lump mass. 
We also assume that the twin micro-beams are identical 
and they would perform dynamically same. These 
hypothesis can be described like in equation (1). This 
assumption simplifies the analysis by losing some 
accuracy. Figure 1 illustrates the considered simplified 
model by using a mass-spring-damper system: 

 
d2y(t)

dt2
+ 2ξωn

dy(t)

dt
+ ωn

2y(t) =
f(t)

m
 (1) 

 
f(t) in the equation (1) represents the 

electrostatic force, m is the mass of the beam, y(t) 
shows the deflection of micro-cantilever beam and  ξ is 

the damping factor (
C

m
= 2ξωn). 

 

 
Figure 1. The schematic of a mass-spring damper system 

of a beam – lump mass model. 

 
The value of the force exerted due to the 

electrostatic effect between the two parallel surfaces is 
significant in micro-structures. Its expression can be 
obtained from the energy balance and is given by: 

 

f(t) =
ε0AV2

2(g − y(t))2
 (2) 

 
ε0 is absolute permittivity of the medium between 

the surfaces, g is initial distance between beam and 
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substrate, A is area of the beam and V is the applied 
voltage. 

The equation (1) can be rewritten as: 
 

d2y(t)

dt2
+ 2ξωn

dy(t)

dt
+ ωn

2y(t) =
ε0AV2

2m(g − y(t))
2 (3) 

 
where the initial conditions (initial speed at 

reference position and time) for this ODE are assumed 
to be the following: 

 

y|t=0 = 0        and           
dy

dt
|

t=0
= v0 (4) 

 

 
Figure 2. Two identical micro-cantilever beams. 

 
If the substrate is an identical micro-cantilever 

beam like the one above it, the system will be 
constituted of two beams symmetrically positioned and 
parallel. Fig. 2. 

If one assumes that deflection of top beam is y1 
and deflection of lower beam is y2 the differential 
equations of micro-cantilever beams can be written as 
following: 

 
d2y1(t)

dt2
+ 2ξ1ω1n

dy1(t)

dt
+ ω1n

2y1(t)

=
ε0A1V1

2

2m1(g − y1(t) − y(t)2)2
 

 

 

d2y2(t)

dt2
+ 2ξ2ω1n

dy2(t)

dt
+ ω2n

2y2(t)

=  
ε0A2V2

2

2m1(g − y1(t) − y(t)2)2
 

 

(5) 

By assuming that two beams are identical, one can 

assume that all parameters of the two beams are same 

(y2(t)= y1(t),  ξ2 = ξ1, ω2n = ω1n, A2 = A1 , V2 = V1 

and m2 = m1). The system of ODEs can thus be reduced 

to one ODE as following: 

 

d2y(t)

dt2
+ 2ξωn

dy(t)

dt
+ ωn

2y(t) =
ε0AV2

2m(g − 2y(t))
2 

(6) 

 
The micro-cantilever beams are shown in Fig.3. 

 

 
Figure 3. Twin micro-cantilever beams under electrostatic 

filed. 
 

Initial conditions of beams are same as in (4). 

 

3. Theory 
There is no close form analytical formulation in 

the best of our knowledge to express the solution of the 
non-linear equation (6) [11]. The micro dimensions of 
the involved structures contribute to the stiffness of the 
ODE. The current approach used to solve the equation 
(6) is the numerical one. The present study proposes a 
method of reduction of the order of the governing 
equation using Lie symmetry method, transforming the 
second order ODE into a first order ODE that can 
subsequently be solved in an easier manner. In the 
subsequent paragraphs, the terminology involved by 
the use of Lie symmetry method requires is presented. 

The point transformation maps a point (x, y) on a 
specific curve into a point (x1, y1) as below: 

 
x1 = ϕ(x, y, α), y1 = ψ(x, y, α) (7) 

 
where ϕ, ψ are diffeomorphism functions (C∞). A 

symmetry transformation preserves the shape of a 
given curve and maps this curve on itself. A 
transformation like (7) which satisfies the group 
properties is called a one-parameter group while α is 
called the parameter of the group. 

An infinitesimal transformation for a one-
parameter group is defined as: 
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Uf = ξ(x, y)
∂f

∂x
+ η(x, y)

∂f

∂y
 (8) 

 
Where: 
 

η(x, y) =
∂ψ

∂α
|

α=0
ξ(x, y) =

∂ϕ

∂α
|

α=0
 

f = f(x, y) 
(9) 

 
U is the transformation operator on the function f. 

The necessary and sufficient condition for a group to be 
a symmetry transformation for a function f=f(x,y)  is 
that: 

 
Uf = 0 (10) 

 
The condition (10) will be used to calculate the 

infinitesimal transformations of the ODE (6). The 
prolonged vector method [12] is common way to 
calculating the Lie symmetry of a group.  

For a second-order ODE like below: 
 

d2y

dx2
=  ω(x, y,

dy

dx
) (11) 

 
An infinitesimal transformation is applied as an 

operator on itself and, both functions ξ and η defined in 
(9), must satisfy the following equality [11]: 

 

ηxx + (2ηxy − ξxx)ý 

+(ηyy − 2ξxy)ý2 − ξyyý3   + 

(ηy − 2ξx − 3ξyý)ω = 

ωx + ηωy + ((ηx − ξx)ý − ξyý2) ωý 

(12) 

 
Subsequently, ξ and η can be calculated by 

decomposed [3-6] into a system of partial differential 
equations. The following Lie symmetries which 
including rotation, translation and scaling was 
considered to calculate ξ and η. 

 
ξ = C1 + C2x + C3y 

η = C4 + C5x + C6y 
(13) 

 
By substituting the equations (13) in (12): 
 

αC6ý − 2C2αý − 3C3αý2 + βC6 − 2βC2y
− 3βC3yý = 

(14) 

βC4 + βC5x + βC6y + αC2 + αC6 − C2αý
− C3αý2 

 
Where 

α = −2ξωn, β = −ωn
2 

 
The coefficients of  ý2 in left hand and right-hand 

terms must be equal: 
 

−3C3𝛼 =  −C3𝛼 (15) 
 
Therefore: 
 

C3 = 0 (16) 
 
Following the same procedure, the coefficients of   

in left hand and right hand terms are equated: 
 

αC6 − 2αC2 − 3βC2 = αC6 − αC2 (17) 
 
By simplification: 
 

−αC2 − 3βC2 = 0 
 

(18) 
 

C2 = 0 (19) 
 
The coefficients of x in left hand and right hand 

terms must also be equal, then: 
 

C5 = 0 (20) 
 
Considering the expressions (16), (17) and (20), 

the equation (14) becomes: 
 

βC6y = βC4 + βC6y (21) 
 
With these considerations: 
 

C4 = 0 (22) 
 
From the above calculations, it can be concluded 

that the equation (9) has the following infinitesimal 
form: 

 
Uf = fx (23) 

 
Any pair of functions r(x,y), s(x,y) satisfying the 

following conditions forms canonical coordinates: 
ξ(x, y)rx + η(x, y)ry = 0 (24) 
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ξ(x, y)sx + η(x, y)sy = 1 

|
rx ry

sx sy
| ≠ 0 

 
The equation (23) satisfies the conditions (24) 

and therefore, ξ(x,y)=1,η(x,y)=0 . 
The canonical coordinates for a function f(x,y) can 

be found from the characteristic equation [11]: 
 

dx

ξ(x, y)
=

dy

η(x, y)
= ds (25) 

 
The solution of the above ODE is r(x,y): 
 

dy

dx
=

η(x, y)

ξ(x, y)
 (26) 

 
and  s(x,y)  will be: 
 

S(r, x) = (∫
dx

ξ(x, y(r, x))
)|

r=r(x,y)

 (27) 

 
Through adequate selection of variables, the 

order of the ODE can be reduced. From (25), (26) and 
(27) the canonical coordinates can be calculated as: 

 
(r, s) = (y, t) (28) 

 
Considering: 
 

r(y, t) = y (29) 
 
The function v  is defined as: 
 

υ =
1

dy

dt

 (30) 

 
The equation can be expressed by contact form 

[11] as: 
 

dν

dr
= −

d2y

dt2

(
dy

dt
)2

 

or: 

(31) 
 

d2y

dt2
= −ν−2

dν

dr
 (32) 

 

The canonical coordinates and ν =
ds

dr
 can be 

calculated by using the relations (25), (26) and (27). By 
considering v as a new variable and substituting in the 
ODE (6), the new generated ODE will have one order 
less than the original one.  

Substituting (30), (31) and (32) in (6) yields: 
 

−
dν

dr
+ 2ξωnv2 + (ωn

2r −
ε0AV2

2m(g − 2r)2) ν3 = 0 (33) 

 
The equation (33) is a first order ODE and  ν(0) =

1

v0
  it is the initial condition.  

According the recent investigations there is no 
one-parameter group that satisfies the symmetric 
condition (33). For this reason, no analytical solution 
for this ODE can be formulated. One can show that there 
is no transformation of scaling or rotation symmetry for 
(6) [11]. This equation has a singularity (where gr  ) 

and the integration in close form is therefore 
impossible. Hence, the numerical method approach is 
used in solving the first order differential equation. 

 

4. Results 
For both scenarios (one beam and two-beam 

setups) a numerical analysis is performed. The 
constructive parameters for the polysilicon beams are 
200μm length, 20μm with and 2μm thickness with a 
Young modulus of 169 MPa and gap distance is 10μm. 
For a more detailed insight in the method of analysis 
one can refer to [11].   

The value of pull-in voltage is calculated by 
assuming that nonlinear part of the equation (33) to be 
zero, as follows: 

 

V = √
2my

ε0A
(g − 2y)ωn (34) 

 
Pulling voltage numerically determined from the 

bellow graphs is 129.055 V for a two-beam setup and 
182.511 V for one beam [11].  The pull-in value 
calculated from (34) shows that, for the two-beam 
setup, the error of the exact solution with respect to the 
numerical solution is 0.104%. For the single beam, 
using almost similar equation the calculated error 
increases slightly to 0.449%. The value of the deflection, 
y, used in the equation (34) for two parallel beams was 
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considered half of through deflection in the case of one 
beam. 

 

 
Figure 4. The variation of the deflection for one beam and 

two-beam scenarios. 

 
The one beam configuration as the two beam 

configuration exhibit same behaviour as illustrated in 
Fig. 4. When excited with a voltage close to the pull-in 
voltage, the beams will deflect to a maximum deflection 
representing 0.45 of the original gap for one beam and 
0.225 of the original gap for two beams configuration. 
After a period of stall, the beams will settle with 
oscillations versus a position that corresponds to 0.225 
of the original gap for one beam configuration and 
0.1175 for two beam configuration. 

 

 
Figure 5. Phase diagram of twin beams. 

 
The stall is seen as well in the phase diagram for 

one and two beam configurations beams. 
 

5. Conclusions 
The dynamic behaviour of a micro-cantilever 

beam under the influence of an electric field and excited 
by an electric potential close to the pull-in voltage was 
investigated analytically and the results validated 

experimentally with data from the literature. A 
particular exact solution of the governing equation was 
found using the Lie symmetry method, by reducing the 
order of the initial ODE. 

The pull-in voltage of one and two-beam setups 
was determined both analytically and numerically and 
the error between the two methods calculated. An 
experimental validation of one beam pull-in to a rigid 
substrate was carried out in the laboratory and the 
result show that the model is accurate within 96% [13]. 
It is expected that the two beam model that used same 
constitutive formulation would yield similar accuracy 
range as same assumptions were made in the modeling. 
The findings can be used to model and design micro-
flow sensors, wind sensors or other physical quantities 
which are encountered in gas flow. 
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