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Abstract- Shaping the soundboard braces on a wooden 
stringed musical instrument has long been a way in which 
instrument makers optimize their musical instruments. 
Reasons for these methods are scientifically not well 
understood. Various bracing patterns have successfully been 
used to create different-sounding wooden stringed musical 
instruments. These bracing patterns stimulate the modeshapes 
that are specific to the soundboard of the instrument. However, 
a higher adjustment resolution is required in order to specify 
the frequency spectrum of the musical instrument. This paper 
demonstrates how the shape of the braces affects the 
modeshapes of the vibrating system. A simple analytical model 
composed of a plate and brace is analyzed in order to see these 
effects. The results are plotted together for three cases: the 
plate by itself, the plate with a rectangular brace and the plate 
with a scalloped brace. For clarity, the modeshapes are 
analysed in 2D at different locations and along both the x and y 
directions of the plate. It is shown that any brace affects 
modeshapes for which the brace does not run along a nodal 
line. The different shapes of the brace are shown to affect 
different modeshapes by various degrees. If braces are stiffened 
at locations of maximum amplitude for a given modeshape, 
then that modeshape will be significantly affected. It is clear 
that by properly designing the shape of a brace, instrument 
makers can exert great control over the shape of the 
instrument’s modeshapes and therefore also their frequencies.  
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1. Introduction
For centuries, stringed wooden musical instrument

makers have been optimizing the sound of their musical 
instruments. Separately, the study of the physics of musical 
instruments has been on-going for some time. These studies 
have generally looked at sound production and sound 
radiation in musical instruments (Benade, 1990; Brooke and 
Richardson, 1993; Fletcher and Rossing, 1998; Chaigne, 1999; 
Richardson, 1999). Other studies have looked into modeling 
the instrument in order to better understand its function. The 
typical numerical approach is to use finite element analysis, 
but other methods are also used (Knott et al., 1989; Bretos et 
al., 1999; Elejabarrieta et al., 2001; Bécache et al., 2005). 
Since wood is a naturally inconsistent material, numerical 
models are often compared to real counterparts and 
parameters are adjusted to match experimental results 
(Elejabarrieta et al., 2000; A. Okuda and Ono, 2008). In 
parallel with these developments, the ability to achieve high 
dimensional tolerances has also been achieved in the 
instrument manufacturing industry.  In spite of this, 
acoustical consistency is still lacking in manufactured 
wooden instruments (French, 2008). The primary reason for 
this is a lack of scientific understanding of the methods used 
by musical instrument makers in optimizing the sound of 
their instruments. 

The soundboard of a stringed musical instrument is 
considered to be the most acoustically active part of a 
stringed musical instrument (Siminoff, 2002). Therefore, 
when optimizing the sound of the instrument, the 
soundboard becomes the most interesting component. 
Although it is clear that the bracing pattern of the 
soundboard has a significant effect on its modeshapes, very 
little scientific research on this subject exists. However, a 
very good historical timeline exists for its development 
(Turnbull, 1992; Natelson and Cumpiano, 1994). It is clear 
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that bracing patterns of the soundboard emerged out of the 
need to allow the soundboard to vibrate as easily as possible 
while still maintaining structural integrity under string 
tension. Early guitars had gut strings which applied less 
tension to the soundboard. Early brace designs typically 
searched for ways of distributing this local string load over 
the entire soundboard. By doing so, the effectiveness of the 
bracing pattern was judged not only on how well it resisted 
the local string tension but also based on how clearly and 
how well the musical instrument projected its sound. Early 
designs included simple ladder bracing. Eventually, a fan 
design was developed by A. de Torres. Since the design 
proved to be very effective, it was adopted by many other 
instrument makers. Its widespread use eventually made it the 
industry standard. When classical and flamenco guitars 
started using nylon strings, tension in the strings remained 
similar, therefore tradition dictated the continued use of fan 
bracing. Although various builders have introduced small 
variations to brace structure over the years, very little has 
changed in the design of most instruments. In parallel, 
musicians started to seek larger and louder guitars. This led 
to the use of steel strings which produce much greater 
tensions. Typical fan bracing could not support this higher 
load. The solution came in the form of an X-brace design 
developed by C. F. Martin many years before. This design 
proved highly effective and has been the standard for steel 
string guitars ever since. The efficiency of these designs has 
been optimized empirically over the years with subjective 
analysis coming from critical musicians. More recently, lattice 
type bracing and double-top soundboards, where Nomex 
honeycomb paper is sandwiched between two thin layers of 
wood laminate, have seen a surge of interest among 
instrument makers, however their advantages are still under 
review by the community.  

Very little scientific study has actually been performed 
on the effects of the various brace patterns and placements 
on the sound of the musical instrument. In fact, a look at the 
references in Fletcher and Rossing’s review of musical 
acoustics shows little to indicate otherwise (Fletcher and 
Rossing, 1998). Conversely, based on years of experience, 
many renowned instrument makers including Cumpiano and 
Natelson as well as Somogyi believe that it is not so much the 
bracing pattern itself that has the greatest effect on the sound 
quality of the instrument but rather the skill in which 
inconsistent wood properties are accounted for in the 
construction of the instrument (Somogyi, 1993; Natelson and 
Cumpiano, 1994). Most knowledge of soundboard physics 
comes from technical articles, such as the article by Somogyi 
(Somogyi, 1993), written by instrument makers trying to 
explain what they have come to grasp naturally. In these 
articles, the dynamics of the soundboard motion are based on 
physical observation alone.  

A few other works have looked at how different bracing 
patterns change the modal properties of the soundboard 
using Chladni’s method and have then attempted to model 

the differences using finite element modal analysis (Sumi and 
Ono, 2008; Curtu et al., 2009). However, none of these papers 
explain how to effect specific changes in the bracing in order 
to produce specific modal patterns. An interesting paper by 
Lawther addresses the issue of avoiding certain frequency 
ranges in the context of braced structures through a 
modification of the bracing (Lawther, 2007). However, the 
goal was to avoid resonance rather than to tune the structure. 
In many ways, the bracing structure of a guitar is a 
scientifically misunderstood phenomenon which has built its 
success on the back of generations of practical experience. 
Although a good general idea of the physics behind the 
structure exists, no mapping of its dynamics has been 
thoroughly carried out. 

However, it is clear that while bracing patterns have a 
direct effect on the modeshapes they cannot directly be used 
to choose the frequency spectrum of the soundboard. In most 
cases, bracing patterns completely reorganise the set of 
modeshapes. Thus a finer adjustment is necessary if only a 
change in frequency is sought. The most common way in 
which instrument makers adjust and optimize their musical 
instruments is by shaping the soundboard braces. Typically, 
the braces end up with what is known as a scalloped shape, as 
shown in Fig. 1. 

 

 

Fig. 1. Shape of a scalloped brace  

 
Very little is known scientifically as to why instrument 

makers shape their braces and much debate still exists about 
the usefulness of scalloped braces. Although musical 
instrument makers have attempted to share their vast 
knowledge, a large gap still exists between their empirical 
methods and the scientific understanding and reasoning 
behind such methods. Thus, the goal of this paper is to 
demonstrate the effects of using a shaped brace on the 
modeshapes of a soundboard. A previous study has looked at 
the effects of brace shape on the frequencies of the system 
(Dumond and Baddour, 2012), but to the best of the author’s 
knowledge, the effect of brace shape on the system’s 
modeshapes has not been previously explored in the 
literature.  

 

2. Model 
A simple analytical model is used to investigate the 

effects of a shaped brace on the modeshapes of a rectangular 
plate. Fig. 2 shows a typical soundboard section supported by 
a single brace. The brace is used to reinforce the structurally 
weaker direction of the plate. 
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Fig. 2. Orthotropic plate reinforced by a scalloped brace  

 
The assumed shape method is used in the analysis 

(Meirovitch, 1996). Since this is an energy method, the kinetic 
and strain energies of the plate must be developed. Certain 
assumptions are made in creating the model. The brace is 
modeled as a thicker section of the plate.  The plate is 
considered thin and linear Kirchhoff plate theory is used. 
Although, as shown in Fig. 2, the grain of the plate and brace 
are perpendicular to each other, the way in which the kinetic 
and strain energy are added force the grain of the plate to be 
parallel to the brace between x1 and x2 in the analytical model. 
This is justifiable since brace properties dominate this region.  
The plate is modeled as being simply supported, although a 
more accurate analysis would find it to be somewhere 
between simply supported and clamped (Fletcher and 
Rossing, 1998). Finally, the system has been modeled as 
being conservative in nature which is accurate based on the 
lower frequency range being used (Hutchins and Voskuil, 
1993). 

The assumed shape method is favoured for this study 
because it uses global elements based on the modeshapes of 
the rectangular plate such that 
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where xL  and yL  are the dimensions of the plate in the x  

and y  directions respectively and xn  and yn are the trial 

function numbers in these same directions. Therefore any 
physical modifications made to the plate by the addition of 
some form of bracing will be reflected directly in the 
method’s choice and summation of trial functions used to 
represent any given modeshape. In this way, the effects of the 
shape of the brace can be seen not only by analysing the final 
model but also when building the model, thereby significantly 
increasing insight into the problem. 

 
2. 1. Kinetic and Strain Energies 
The kinetic and strain energy are separated into three 
distinct sections along the x-axis, as shown in Fig. 2. Kinetic 
and strain energies of an orthotropic plate are used 

(Timoshenko and Kreiger, 1964). The kinetic energy for the 
plate and brace system is thus given by 
 

1 2

1

2

2 2

0 0 0

2

0

1 1
d d d d

2 2

1
d d

2

y y

yx

L Lx x

p c

x

LL

p

x

T w y x w y x

w y x

 



 



   

 

 (2) 

 
where the dot above the transverse displacement variable w  
represents the time derivative and   is the mass per unit 

area of the plate such that 
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  is the material density and ph  and ch are the thickness of 

the plate alone and combined brace-plate sections, 
respectively.  The brace modifies the expression for strain 
energy which becomes 
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where the subscripts on w  refer to partial derivatives in the 

given direction, as per standard notation. The stiffnesses D  

are section-specific because of the change in thickness h  

from 1x  to 2x  so that for the plate-only (no brace) section it 

follows that 
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and similarly for the combined brace-plate section where the 

subscript ‘ p ’ is replaced with ‘ c ’. Also, G  is the shear 

modulus and the S  are stiffness components that are defined 

as 
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Here, the subscripts represent the direction of the plane in 

which the material properties act. Therefore, xE  is the 

Young’s modulus along the x-axis, yE  along the y-axis and 

xy  and yx  are the major Poisson’s ratios along the x-axis 

and y-axis, respectively. 
 

2. 2. Brace Shape 
Although an argument could certainly be made for many 

other brace shapes, this study looks at the most common 
shape used by musical instrument makers. Furthermore, in 
order to fully understand the effects of brace shape, only a 
single brace is considered in this paper. The scalloped peaks 
are placed at locations of importance, as pointed out in the 
discussion. 

The scalloped brace shape is defined as a second-order 
piece-wise polynomial function which puts the peaks of the 
scallops at positions ¼ and ¾ of the length of the brace. The 

thickness of the brace, bh , is then defined as 
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Here,  boh  is the height of the brace at its ends and center and 

  is the scallop peak height adjustment factor which is a real 

value whose range can be any value within physical reason. 
Within physical reason implying that the scalloped peaks can 
be made from the available bracing material being used, fit 
within the musical instrument’s soundbox and does not 
interfere with the vibration of the musical instrument. 

Finally, the width of the brace is defined as bL .  

Since the rectangular brace has uniform thickness along 

its entire length, bh  remains a constant equal to boh  during 

the analysis of the rectangular brace-plate system. 
      

3. Results 
3. 1. Wood Properties 

The material used in the analysis is Sitka spruce. This is 
the most common material used for soundboards in the 
stringed musical instrument industry. Properties of Sitka 
spruce are obtained from (Forest Products Labratory (US), 
1999) and can be seen in Table 1. 

 

Table 1. Orthotropic material properties of Sitka spruce 

Material properties Values 
Density – μ (kg/m3) 403.2 
Young’s modulus – ER (MPa) 850 
Young’s modulus – EL (MPa) ER / 0.078 
Shear modulus – GLR (MPa) EL × 0.064 
Poisson’s ratio – νLR 0.372 
Poisson’s ratio – νLR νLR × ER / EL 

 
In Table 1, the subscripts ‘R’ and ‘L’ refer to the radial and 
longitudinal directions of the wood respectively. These 
property directions are adjusted accordingly for both the 
plate and brace as shown in Fig. 2. 

 
3. 2. Soundboard Dimensions 

The dimensions given to the model for analysis are found 
in Table 2.  The subscript ‘p’ stands for plate dimensions, ‘b’ 
for the brace and ‘c’ for the combined plate and brace. 

 

Table 2. Model dimensions 

Dimensions Values 
Length – Lx (m) 0.24 
Length – Ly (m) 0.18 
Length – Lb (m) 0.012 
Reference – x1 (m) Lx / 2 – Lb / 2 
Reference – x2 (m) x1 + Lb 
Thickness – hp (m) 0.003 
Thickness – hbo (m) 0.012 
Thickness – hc (m) hp + hb 

 
3. 3. Analysis 

In order to perform the analysis and derive the 
modeshapes (eignenvectors) of the system, a computer 
algebra system was used (Maple). Maple is mathematical 
software package produced by Maplesoft which solves 
analytical equations such as those stipulated above.  
Modeshapes for the brace with a scalloped brace are 
compared to those of the plate alone and those of a plate with 
a rectangular brace. The effects of the brace shape can then 
be observed. In order to get a good understanding of the 
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effect on modeshapes, 2D plots are given at three different 
cross sections (slices) of the plate along two directions. These 
can be observed in Fig. 3 to Fig. 8. Each 2D plot contains the 
corresponding 3D modeshape in the top right corner for 
reference. 

 

 
Fig. 3. Location of cross-section for modeshape comparison 

 

 
Fig. 4. Section “A-A” comparison of modeshapes:  

a. 1 × 1, b. 2 × 1, c. 1 × 2 
 

 
Fig. 5. Location of cross-section for modeshape comparison 

 

 
 
 

 
Fig. 6. Section “B-B” comparison of modeshapes:  

a. 1 × 1, b. 2 × 1, c. 1 × 2 
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Fig. 7. Location of cross-section for modeshape comparison 

 

 
Fig. 8. Section “C-C” comparison of modeshapes:  

a. 1 × 1, b. 2 × 1, c. 1 × 2 

 
Previous studies have shown that locally stiffening a 

plate increases certain frequencies while having very little 
effect on others. The reasons for this can be directly observed 
from the modeshapes. 

 
3. 4. Discussion 

From Fig. 4a and Fig. 6a and c, it is clear that locally 
stiffening the plate with a brace reduces the maximum 
amplitude possible for its vibration. This implies that 
frequencies associated with these modeshapes will increase. 
However, from Fig. 4a and Fig. 6a, it can be observed that 
scalloping the brace has very little impact compared to the 
simple rectangular brace on the average modeshape 
amplitude. This follows since the base thickness of the 
scalloped brace is very similar to that of the rectangular brace 
and since the maximum amplitude of the first modeshape 
occurs at the centre of the brace, the effect of both braces is 
similar. 

The flattening of the modshape visible in Fig. 4a and Fig. 
6a is to be expected and occurs because the brace is finite in 
width and is located at the center of this fundamental 
modeshape. It is interesting to note that although the 
scalloped brace flattens out the center portion of the 
modeshape more than it does for the rectangular brace, the 
amplitude of the modeshape seems to be compensated in the 
portions of the modeshape lying outside of the braced region. 
This helps explains why the fundamental frequency is less 
affected by the scalloped peaks than higher frequencies 
(Dumond and Baddour, 2012). 

Conversely, observing the third modeshape in Fig. 6c, it 
can be seen that scalloping the brace has a significant effect 
on the maximum possible amplitude.  This is because the 
peaks of the scalloped brace were designed to occur directly 
in the location of the maximum amplitude of this modeshape. 
Therefore this region is locally significantly stiffer with the 
scalloped brace versus the rectangular brace. 

Furthermore, it can be observed from Fig. 4b and Fig. 6b 
that there is very little effect from either brace since the 
braces are positioned along the nodal line of the second 
modeshape. 

Finally,  
Fig. 7 and Fig. 8 show the first three modeshapes along 

the brace in the y-direction, and it can be seen that the 
scalloped shape brace has the same effects as discussed 
previously. Once again, the scalloped shape has a much larger 
effect on the third modeshape, as seen in Fig. 8c, than it does 
on the first modeshape of Fig. 8a when compared to the 
rectangular brace. 

Clearly this particular brace was designed to have the 
most significant effect on the third modeshape since the 
scalloped peaks occur exactly at the point of maximum 
amplitude for this modeshape. Looking at other modehsapes, 
it could easily be seen that if a maximum amplitude occurred 
near the region of the scalloped peak, the peak would have a 
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larger effect on this modeshape than if it had a node at the 
same location. If the goal, then, is to significantly affect one 
particular frequency, the potential solution is to locally 
change the stiffness using a scalloped peak of extra material 
at the location of maximum amplitude of the frequency 
associated with that modeshape. 

 

4. Conclusion 
It thus becomes clear that by properly designing the 

shape of the braces on a soundboard and placing them in 
specific positions, an instrument maker has great control 
over the shape of modeshapes. By selecting some positions 
over others, it also allows some modeshapes to be modified 
without significantly affecting others. 

Reducing the maximum amplitude of a modeshape 
increases the associated frequency. Reducing the maximum 
amplitude of a modeshape can be achieved by physically 
stiffening the system globally or locally. In this case, locally 
stiffening the system with a brace becomes much more 
interesting due to the requirement for the system to remain 
flexible overall. It also allows the modification of certain 
modeshapes (and therefore their associated frequencies) 
without significantly affecting others. This is extremely 
important when trying to control multiple frequencies 
associated with a set of modeshapes. 

In the end, it may not be the modeshapes that control the 
sound produced by a musical instrument. However, by being 
able to locally control the stiffness of various regions of a 
soundboard and hence the maximum possible amplitudes for 
a given modeshape, it is possible to control the frequencies 
associated with these modeshapes. A desired increase in a 
certain natural frequency requires a simple stiffening of the 
areas associated with the maximum amplitudes of the related 
modeshape. 
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