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Abstract- This paper deals with the design of adaptive 
observers that can estimate both the states and the parameters 
of a large class of nominal and perturbed nonlinear systems 
with a regression matrix (i.e. matching matrix with the 
unknown parameter vector) depending on unknown states. The 
asymptotic stability of the state and parameter estimate errors 
is developed in the presence of common persistency of 
excitation (PE). The observer gain calculus is cast as a linear 
matrix inequality (LMI) feasibility problem. The appeal of this 
proven theoretical design is further demonstrated numerically. 
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1. Introduction
The adaptive observer design for linear and nonlinear

systems has been widely investigated during the last few 
decades (Khayati & Zhu, 2011; Zhu & Khayati, 2011; Maatoug 
et al., 2008; Cho & Rajamani, 1997; Marino & Tomei, 1995) 
and references cited therein. In (Cho and Rajamani, 1997), 
the authors have designed a systematic approach for an 
adaptive observer that estimates the full-state variables for 
nonlinear dynamics in the presence of uncertain parameters 
possibly depending on the input and state variables. The 
stability of the algorithm is guaranteed when at least some of 
the measured outputs are such that the transfer matrix from 
the unknown parameters to these outputs is dissipative (Cho 
& Rajamani, 1997). The design of the observer depends on 
the ability to solve an LMI problem under a conservative 
matrix equality refering to “matchning conditions” of the 
dynamic representation. Even, it has been reported and 
applied in many other works in the literature (Dimassi et al., 

2010; Liu, 2009; Dong & Mei, 2007; Stepanyan & 
Hovakimyan, 2007; Zhu, 2007), this concept is still hard to 
achieve within some (but very common) dynamics as 
discussed in (Zhu and Khayati, 2011). 

The design of adaptive observer schemes to estimate 
jointly the states and the parameters for nonlinear dynamic 
systems with uncertainties referring more to actual scenarios 
has been studied (Zhao, et al., 2011; Paesa, et al., 2010; 
Zemouche & Boutayeba, 2009; Stamnes, et al., 2009; 
Garimella & Yao, 2003; Marino, et al., 2001). However, there 
are still problems (other than the matching conditions) in 
these given adaptive observers, and also, the assumptions are 
difficult to achieve. In most of these recent works, authors 
have considered the case of known nonlinear regression 
matrix of measurable states and inputs (Zhao et al., 2011; 
Paesa et al., 2010; Garimella & Yao, 2003; Marino et al., 2001). 
In (Zemouche & Boutayeba, 2009), a unified H adaptive 
observer for a class of nonlinear systems is introduced to 
estimate uncertain parameters in the unmeasured 
nonlinearities. These nonlinearities must be differentiable so 
that the differential mean value theorem can be applied. In 
(Stamnes et al., 2009), the authors have designed a nonlinear 
adaptive observer for a limited class of nonlinear systems. 
The proposed adaptation law has been built using nonlinear 
partial differential equations in known and unknown states. 
However, the stability of such an observer requires nonlinear 
time-varying “sector conditions” to be satisfied. 

In this paper, a more general form of the adaptive 
observer scheme discussed in (Zhu and Khayati, 2011) will be 
extended to nonlinear dynamics with a regression matrix 
function of both measurable and unmeasurable signals and 
unknown disturbances. The stability condition of the 
proposed adaptive observer will be presented using only 
strict LMIs (Boyd et al., 1994). The proposed design 
estimating the full states and identifying the unknown 
parameters for a large class of nonlinear dynamic systems is 
cast with general conditions that are still feasible and address 
realistic plants. This paper is organized as follows. In Section 
2, we describe the problem statement and assumptions. In 
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Section 3, we introduce the general form of the nonlinear 
adaptive observer (NLAO) for the nominal dynamics (with no 
disturbances), and then, the robust nonlinear adaptive 
observer (RNAO) for perturbed nonlinear dynamics 
respectively. Section 4 shows illustrative simulation 
examples, while Section 5 concludes this work. 
 

2. Statement and Assumptions 
2.1. Problem Statement 

Consider the nonlinear dynamics with unknown 
disturbances: 
 

       0 0 1 1, , ,x Ax B f u y B f u x Bf u x E t     
       

(1) 

 y Cx D t 
 

                (2) 

 

where nx  is the state vector, pu  the input vector, 
my  the output, q   the vector of unknown constant 

parameters and  t    represents unknown disturbances. 

n nA  , 0
n kB  , 1

n rB  , n sB  , nE  , m nC   and 
mD   are known constant matrices.  0 ,f u y ,  1 ,f u x  and 

 ,f u x  are nonlinear functions in k , r  and s q , 

respectively. 
 
2.2. Assumptions 

For the forthcoming design, we consider the following 
assumptions (Zhu and Khayati, 2011): 
A1. The vector of unknown constant parameters   is 

bounded, with 
 

                     (3) 

 

A2.  ,f u x  is continuously bounded, and both functions 1f  

and f  are Lipschitz in x , with 

 

   1 1 1
ˆ ˆ, ,f u x f u x x x                (4) 

   ˆ ˆ, ,f u x f u x x x                (5) 

 
A3. The input vector u  is of class 1  (i.e. continuous function 

having continuous first derivatives). 
 

3. Adaptive Observer Design 
For the adaptive observer design, we first briefly 

introduce the design for the case of nominal dynamics i.e. 
disturbance free one; then we extend it to the perturbed case 
and prove the effectiveness. 

 
 
 

3.1. Case 1 – Nominal Dynamics 
Given the unperturbed nonlinear model, that is 

described by (1) and (2) with 0D   and 0E  . Consider the 

following full-order nonlinear observer 
 

       0 0 1 1
ˆˆ ˆ ˆ ˆ ˆ, , ,x Ax B f u y B f u x Bf u x L y Cx           (6) 

 
and adaptation law 
 

       ˆ ˆ ˆ, , ,T T T Tf u x B P CL f u u x B P y Cx           (7)

    ˆ ˆ ˆ,T Tf u x B P y Cx                 (8) 

 

where  ˆ, ,f u u x  is the total time derivative of  ˆ,f u x  given 

by      ˆ ˆ ˆ ˆ, , , ,
ˆ

f f
f u u x u x x u x u

x u

 
 
 

, 0T    matrix of q q , 

n mL  ,   and   matrices of n m . 
 

Proposition 1 – Under assumptions A1-A3, if there exist 

matrices 0TP P   in n n  and n mW   such that 

 
2

0
T T T

n

n

PA A P WC C W I P

P I

    
 

 
         (9) 

 

with 1 1 0B B      and matrices   and   of n m  

computed from 
 

10,   0,    nCB CB C CA I               (10) 

 

with nI  the identity matrix of n n , then the state estimation 

error vector ˆx x x   of the NLAO (6)-(8), with the observer 

gain matrix computed as 1L P W , for the nominal system 

(1) and (2) tends to zero and the parameter estimate error 

vector ˆ     is radially bounded. In addition, if for some 

positive scalars 1 , 2  and 0t with the inequalities 

 

   
0

1 2, ,
t t

T T
q qt

I f u x B Bf u x d I  


          (11) 

 
hold t , where qI  is the identity matrix of order q , then 

both estimate errors 0x   and 0   asymptotically as 
t  . The condition (11) refers to the PE which is very 

common in the literature (Maatoug et al., 2008; Dong & Mei, 
2007; Cho & Rajamani, 1997). 
 

Proof – Let ˆx x x   and ˆ     be the state and 

parameter estimate errors, respectively. From (1), (2) and 
(6), we derive 
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        1 1 1
ˆ, , B ,x A LC x B f u x f u x f u x      

   ˆˆ,f ux x                 (12) 

 

Based on assumption A1, we have ˆ   . From (7) and 

(8), we derive 
 

   ˆ ˆ, , ,T T T Tf u u x B P Cx f u x B P Cx      

 

     ˆ ˆ, ,T T T Tf u x B P CL Cx f u x B P C      

 

        1 1 1
ˆ ˆ, , ,T TA LC x f u x B P CB f u x f u x     

 

      ˆˆ ˆ, , ,T Tf u x B P CB f u x f u x    

      

(13)

 

 
By using the conditions (10), (13) reduces to 
 

 ˆ,T Tf u x B Px                (14) 

 

Now, to investigate the stability, given 0TP P   and 

0T   , consider the Lyapunov candidate function 

  1T TV t x Px      (Khayati and Zhu, 2011). Using (12) and 

(14), we have 
 

  12 2T TV t x Px    

 
        1 1 1

ˆ2 , ,Tx P A LC x B f u x f uV t x    

 
      ˆ, ,B f u x u xV t f              (15) 

 
Based on the inequalities of assumptions A1 and A2, we 

have 
 

    1 12
TTV x P A LC A LC P x B Px x       

 

 2 B Px xV               (16) 

 

Using 1 1 0G G     , we notice the inequality 

22 T TPx x x PPx x x   , we obtain 

 

    2TT
nV x P A LC A LC P PP I x      

 
     (17) 

 

V  is negative if 

 

    2 0
T

nP A LC A LC P PP I              (18) 

 
The inequality (18), which is nonlinear in P  and L  
(nonlinearities refer to PP  and PL ), will be transformed into 
the LMI (9) by simply applying the Schur complement 

theorem (Boyd et al., 1994) and the change of variable 
W PL . 

Now, from (17) and (18), 0   such that  

 
2

V x                 (19) 

 

This implies  V t


  (i.e. time-functions of finite -norm), 

and then x


  and 


 . Integrating (19) leads to 

 

     
2

0
0

t

V t V x d                (20) 

 

Since  0V  is finite, we obtain 2x  (i.e. finite 2-norm 

vector-function). From (12), we have x


 . Therefore, by 

applying theorem 8.4 of (Khalil, 2002) based on Barbalat’s 

Lemma, x̂ x  and 0x  . From (12), we have  

    ˆˆ, , 0B f u x f u x   . Using the inequality (5) and 

noting that x̂ x , we have     ˆ, , 0B f u x f u x   . So, 

from ˆ  


    and   is constant (i.e. assumption A1), 

we obtain      ˆˆ, , 0B f u x f u x    and then 

  ˆ, 0Bf u x     as t   (Dong and Mei 2007). Hence, 

   , , 0T Tf u x B Bf u x    as t  . In the following, we 

investigate the PE property to lead to   0t  . Define 

     
0

0 , ,
t

T T

t
t f u x B Bf u x d    (Dong and Mei 2007). Using 

the integration by parts, we obtain 
 

         
0

0 0, ,
t t

T T

t
f u x B Bf u x d t t t t    



    

        
0t t

t
t t d      



  

 

  (21) 

 

As 0t , we obtain 

 

         
0

0 0, ,
t t

T T

t
f u x B Bf u x d t t t t    



    

    
0t t

t
d    



    (22) 

 

Since    , , 0T Tf u x B Bf u x   , then for any finite 0t , we 

have 
 

     
0

, , 0
t t

T T

t
f u x B Bf u x d  



         (23) 

 

Moreover, since  ,f u x  is bounded (see assumption A2) and 

0x , from (14), we have 0 , and then 
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   
0

0
t t

t
d    



  as t  . Thus, from (22), we have 

   0 0 0t t t t     , as t  . From the assumption of PE 

(11), i.e.  1 0 2q qI t t I      0t 
 
for positive scalars 1  

and 2 , we obtain  0 0t t   , implying   0t   (Dong & 

Mei, 2007). 
 
3.2. Case 2 – Perturbed Dynamics 

Consider the perturbed dynamics (1) and (2) under 
assumptions A1-A3. We propose the following RNAO scheme 
 

     0 0 1 1
ˆˆ ˆ, , ,x Ax G f u y G f u x Gf u x     

  ˆLx Ty Cx Ky               (24) 

x̂ x Dy                 (25) 

     ˆ ˆ, , ,T T T Tf u x G P CL f u u x G P       
 

  ˆTy Cx                  (26) 

   ˆ ˆ ˆ,T Tf u x G P Ty Cx             (27) 

 

where  ˆ, ,f u u x  is the total time derivative of  ˆ,f u x ; 

n nA  , 0
n kG  , 1

n rG  , n sG  , n mK  , mT  , 
nC  , n mD  , n   and n   are constant 

matrices computed by the following 
 

0,   0,    DD TD TC C              (28) 

0 0 0 1 1 1,   ,    G B DCB G B DCB G B DCB           (29) 

,    KD E DCE A A DCA ADC KC             (30) 

      10,   0,     nCG CG C C A I        (31) 

 

with nI  being the identity matrix of n n , nL   the 

observer gain and 0T    the adaptation matrix gain of 
q q . 

 
Proposition 2 – Under assumptions A1-A3, if there exist 

matrices  0TP P   in n n  and n mW   such that (32) 

holds, then ˆ 0x x x    and ˆ     is radially bounded as 
t  . 

 
2

0
T T T

n

n

PA A P WC C W I P

P I

    
 

 
      (32) 

 

with 1 1 0G G     . The observer gain matrix is 

1L P W . The algebraic equality conditions (28)-(31) 

complete the computation of the adaptive observer scheme. 
In addition, if the PE condition 

   
0

1 2, , ,
t t

T T
q qt

I f u x G Gf u x d I t  


          (33) 

 

holds for some positive scalars 1 , 2  and 0t , then the RNAO 

(24)-(27) for the perturbed dynamics (1) and (2) is 
asymptotically stable, that is both state and parameter 
estimates converge asymptotically to their actual values as 
t  . 

 

Proof – Using 0DD  , the observer output is reduced to 

x̂ x DCx  . Its time derivative is then obtained from (1), (2), 

(24), (25) and TC C  

 

     ˆ ˆ ˆx Ax ADC KC DCA x LC x x KD DCE         
 

       0 0 0 1 1 1 1
ˆ, , ,ˆ G DCB f u y G f u x DCB f u xx    

 
   ˆˆˆ , ,Gf u xx DCBf u x             (34) 

 
Let ˆx x x   be the state estimate error. From (1), (2), 

(24), (25), we derive 
 

   ˆx A DCA ADC KC x Ax LCx E DCE KD          

     0 0 0 0 1 1
ˆ, ,B DCB G f u y G f ux x     

         1 1 1
ˆˆ, , ,B DCB f u x Gf u x B DCBx f u x           (35) 

 
Using (29) and (30), we obtain 
 

      1 1 1
ˆ, ,A LC x G f u x f u xx     

    ˆˆ, ,G f u x u xx f             (36) 

 

From (26) and (27), using TC C  and the error 

dynamics (36), we derive 
 

   ˆ ˆ ˆ, ,T T T Tf u x G P Cx f u x G P Cx       

       ˆ ˆ,ˆ ,T T T Tf u x G P CL Cx f u x G P C A LC x      

        1 1 1
ˆ ˆ ˆ, ,ˆ , ,T T T Tf u x G P CG f u x f u x f u x G P CG      

    ˆˆ, ,ˆ f u x f u x             (37) 

 
By using the conditions (31), the dynamics (37) reduces to 
 

         ˆ ˆ ˆ,  ,T T T Tf u x G P C C A x f u x G Px     (38) 

 

Let ˆ     be the parameter estimate error. Based on 

assumption A1, we have the ˆ   . Then, we obtain the 

adaptation error dynamics 
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 ˆ,T Tf u x G Px                (39) 

 
To investigate the stability of the estimate error 

dynamics and the proposed LMI feasibility problem, we 

consider the same Lyapunov function   1T TV t x Px      

and the PE condition (33), and we follow the same steps of 
the proof of Proposition 1 shown above.  
 
3.3. Remarks 

In the first algorithm, we discuss a nonlinear adaptive 
observer for disturbance-free dynamics with nonlinear 
regression matrix function of unknown states. The first 
contribution of this paper is that the proposed design has the 
advantage of being applied appropriately for nonlinear 
dynamics (1)-(2) with the particular property of 0CB ; that 

is, columns of the matrix B  lie in the null space of the output 
matrix C . 

Then, we consider the more general case of perturbed 
nonlinear dynamics, which is the second contribution. The 
proposed observer in the second scheme decouples the effect 
of the disturbances from the estimation process. This scheme 
is expected to improve the accuracy and robustness of 
estimation when the system is subject to unknown 
disturbances and noisy measurement. Both schemes 
represent a generalization of the second order adaptive 
observer dynamics introduced in (Zhu & Khayati, 2011). The 
key element of the proposed design is inspired by (Zhao et al., 
2011) where the authors have considered only a linear 
dynamics counterpart with a known regression term. 

The matrices of the adaptive observers are computed 
using equations and LMIs, independently. These independent 
computations make the design of the NLAO and RNAO 
feasible provided the common assumptions and the LMI (9) 
(or (32)) are satisfied. This design is more tractable 
numerically than the method in (Liu, 2009; Dong & Mei, 
2007; Cho & Rajamani, 1997) which needs more effort to 
solve a set of equalities and inequalities simultanously. 
 

4. Illustrative Examples 
In this section, we show three illustrations enhancing the 

effectiveness of both schemes discussed above. The first 
example shows a low speed motion with a dynamic friction of 
unknown states and parameters. In the second example, we 
consider a disturbed second order mechanical dynamics with 
nonlinear terms, while the third one represents a third order 
dynamics including an uncertain nonlinear term. 
 
4.1. Example 1 – Low Speed Motion with Dynamic 
Friction 

Consider a single known mass M  at position p  

 

fMp F u                (40) 

 

under the influence of a dynamic friction fF  and an input 

force u . The friction force fF  is given by the modified LuGre 

model: 
 

- - ( )
( )

f f f

v
F v F v v F s v

g v
        (41) 

1 ( ) 1
( )

( ) 1s c

h v
s v

h v
          (42) 

 

where 2 4( ) 4 sh v v  with v p  represents the actual velocity. 

 is the frictional stiffness. c  is the normalized Coulomb 

friction and s  the normalized static friction coefficient. The 

parameters , c  and s  are unknown. We assume the 

position p  and the velocity v  are both measurable, but fF  is 

unknown and is under the stiffness, Stribeck, static and 
Coulomb effects in the absence of internal and external 
damping frictions (Canudas et al., 1995). The term ( )s v  

represents a finite function which is chosen to describe the 
different friction effects. It replaces the function given in 
(Canudas et al., 1995): 
 

2

( ) ( ) sv

c s cg v F F F e            (43) 

 
In the literature, it was widely proven that the friction 

parameterization is not limited to (43). Indeed, this term is 
nonlinear in the unknown parameter. By using (42), the 
proposed modified LuGre model presents an easy-to-use 
linear-in-the-parameters form that captures most of the 
observed static friction phenomena of velocity and the 
unknown parameters become linearly dependent and thus 
suitable for any on-line estimation. s  denotes the Stribeck 

time constant and indicates the velocity range in which the 
Stribeck effect is effective. The friction model is a nonlinear 
function of s . To prevent further difficulties with the 

nonlinear estimation technique, an empirical value of s  is 

selected from the literatures (Waiboer et al., 2005; Canudas 
et al., 1995). The state representation 1x p , 2x v , 3 fx F  

and 1 2

T
y x x  defines the system in the state space form 

(1) and (2) using the model matrices shown in Table 1. For 
simulation purposes, the parameters characterizing the 

mechanical system are chosen 0.5kgM  , 3 110 Nm  , 

0.2Nc  , 1.05Ns   and 4 24 10 ss   respectively. The 

unknown parameters are 1  , 2

s





 , and 3

c





 , 

respectively. To estimate the unknown friction force and 
parameters, we apply the NLAO design with the computed 
parameters as shown in Table 1. The estimates of the states 
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are shown in Figures 1-3. The estimates of the parameters are 
depicted in Figures 4-6. Both the state estimation error and 
the parameter error converge to zero quickly and accurately. 
 

Table 1. Plant and NLAO parameters in example 1. 

 

 

 
Fig. 1. Position of the low speed motion dynamics. 

 

 
Fig. 2. Velocity of the low speed motion dynamics. 

4.2. Example 2 – Nonlinear Mass-Spring-Damper (MSD) 
Model 

We consider the MSD model introduced in (Stamnes et 
al., 2009) 

 

   Mv b v v kp u w              (44) 

 

 
Fig. 3. Friction of the low speed motion dynamics. 

 

 
Fig. 4. Frictional stiffness of the low speed motion dynamics. 

 

 
Fig. 5. Static friction of the low speed motion dynamics. 
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where u  is the applied force, p  the position and v p  the 

velocity, w  a load disturbance.  The positive constants k , M  

and b  are unknown and denote the spring stiffness, the mass, 

and the nonlinear damping coefficient, respectively. We 
assume the position and the velocity measurements are both 
available but with some noise affecting the velocity signal. By 
assuming the fact that the load exhibit some noisy 
disturbance with similar frequency spectra, for simplicity we 
consider that both load and measurement noises have the 
same magnitude. 
 

 
Fig. 6. Coulomb friction of the low speed motion dynamics. 

 
Using the states 1x p  and 2x v  and the output vector 

components 1 1y x  and 2 2y x w , this dynamic model 

can be written in the state space representation (1) and (2) 
using the model matrices shown in Table 2. The components 

of the unknown vector   are 
1

k

M
  , 

2

b

M
   and 

3

1

M
  , 

respectively  (Stamnes et al., 2009). The parameters 
characterizing the simulated MSD dynamics are chosen 

1kgM  , 10.5NmK   and 10.5Nsmb  , respectively. To 

estimate the unknown states and parameters of the 
dynamics, we consider first the nominal case by assuming a 
disturbance free dynamics and we apply the NLAO scheme. 
Then, we consider the perturbed dynamics for which we 
apply both the NLAO and RNAO and compare their 
effectiveness and performances. The observer and adaptation 
law parameters of the NLAO (6)-(8) and the RNAO (24)-(27) 
are obtained in Table 2. Consider the input signal 

5
20sin(2 ) 10sin

2
u t t  which results in sufficiently 

rich input signal that guarantees the fulfillment of the PE 
condition and that is necessary to ensure the convergence of 
the unknown parameters to their true values). The 
simulation results are shown in Figures 7-11. Both the state 
estimation error and the parameter error converge to zero 
quickly and accurately. Curves of the NLAO and RNAO 

designs overlap almost during all the time showing very 
similar results in terms of the position and velocity estimates 
(see Figures 7 and 8). In addition, curves of the NLAO, applied 
to the disturbance free system, and the RNAO, applied to the 
perturbed one, overlap almost during all the time in terms of 
parameter estimate dynamics (see Figures 9-11). 
 

Table 2. Plant, NLAO and RNAO parameters in example 2. 

 

 
 

 
Fig. 7. Position of the MSD dynamics - Case of nominal system (top) 

and Case of perturbed system (bottom). 
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Fig. 8. Velocity of the MSD dynamics - Case of nominal system (top) 

and Case of perturbed system (bottom). 

 
 

 
Fig. 9. Parameter 

1  of the MSD dynamics. 

 

 
Fig. 10. Parameter 

2  of the MSD dynamics. 

 

 
Fig. 11. Parameter 

3  of the MSD dynamics. 

 
4.3. Example 3 – Nonlinear Third Order Dynamics 

Consider the dynamics below 
 

1 2 3 1 2 1 310x x x x x bx x              (45)

 
2 3 1 32x x bx x                 (46)

 

2 2
3 3 1 2 2 3 3 24 1x x u x x x                (47) 

1 1 2 2andy x y x               (48) 

 

1y  and 2y  are the measurable states. The vector of the 

unknown parameters is  1 2 3

T
    . For simulation, we 

choose 1 1  , 2 2   and 3 3  . First, considering the 

nominal dynamics, the parameter b  is assumed to be a well-

posed constant 1b  . Thereafter, we simulate with some 

dynamic perturbation by assuming b  uncertain. For 

simulation, we consider sin(2.75 /3)b t . The observer 

and adaptation law matrices of the NLAO and RNAO are 
shown in Table 3. 

Using a linear combination of sine waves as an input 
signal, all results of the estimates of the states and 
parameters obtained with the two proposed methods (NLAO 
and RNAO) are shown in Figures 12-17. Both the state 
estimation error and the parameter error converge to zero 
quickly and accurately. The NLAO design has a better 
performance with the nominal case than with the perturbed 
one, while the RNAO converge to zero without shattering 
despite the presence of uncertain dynamics. 
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Table 3. Plant, NLAO and RNAO parameters in example 3. 

 

 

5. Conclusion 
A new nonlinear adaptive observer and a corresponding 

robust scheme are derived for a wide class of nonlinear 
dynamic systems with unknown parameters, uncertain 
dynamics and disturbances. The asymptotic stability is 
developed using LMI frameworks. 

 

 
Fig. 12. State 

1x  of the 3rd order dynamics (example 3) - Case of 

nominal system (top) and Case of uncertain system (bottom). 

 

 
Fig. 13. State 

2x  of the 3rd order dynamics (example 3) - Case of 

nominal system (top) and Case of uncertain system (bottom). 

 

 
Fig. 14. State 

3x  of the 3rd order dynamics (example 3) - Case of 

nominal system (top) and Case of uncertain system (bottom). 

 

 
Fig. 15. Parameter 

1  of the 3rd order dynamics (example 3). 
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Fig. 16. Parameter 

2  of the 3rd order dynamics (example 3). 

 

 
Fig. 17. Parameter 

3  of the 3rd order dynamics (example 3). 

 
The proposed LMI-based adaptive observers are 

designed for general nonlinear systems with unmeasured 
regressor matrices where the matching condition in terms of 
equality constraints on the Lyapunov matrix required in 
several works (e.g. (Liu, 2009; Dong & Mei, 2007; Marino, et 
al., 2001)) is not required. So, this method reduces the 
conservatism of this condition. The proposed estimation 
design exhibits a satisfactory convergence of both the states 
and the parameters to the actual values. Examples with 
simulation results successfully demonstrate the effectiveness 
of the proposed schemes. It is shown that both RNAO and 
NLAO track the trajectory but with a difference. In fact, the 
NLAO design has better performance with the nominal case 
than the perturbed one. We depict the difference that the 
state estimations under the RNAO approach the actual state 
coincidently while the NLAO does not. Moreover, the 
parameter estimation errors under the RNAO converge to 
zero despite the presence of uncertain dynamics, but the 
errors under the NLAO converge to zero only when the 
system is nominal. A recent work investigating the potential 
of the proposed method with an exponential stability of both 
the state and parameter estimates has been extended. 

Furthermore, experiments will be implemented to validate all 
those techniques within real-world scenarios. 
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